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Outils d'interprétation des aquifères non-uniformes 
en essai de pompage : 

des "diagnostic plots" aux séquences de dimensions 
d'écoulement
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 Hydrogeology practitioners must cope with new contexts:

• Sustainability management of GW resources systems that are
increasingly pressured (population growth and industrial development)

• Emerging advanced fields: geothermal energy, radionuclide in situ
repositioning, carbon sequestration etc.

• Stricter legislations for water quality and environmental impacts assessment

 This requires to provide refined investigation tools in routine applications

 Better assessing the complex nature of real aquifers

 Conceptual models accounting for heterogeneous flow conditions

GW resources management : current challenges



 Routinely used models are overly simplified

 Curve-matching with Theis type-curves (Theis, 1935) 

 Theis-derived models: Cooper and Jacob semilog plot (Cooper and Jacob 1946)

 Theis model (80 years-old…!) 

 First-order solution to the hyperbolic transient-diffusivity problem,

 Assumes perfectly homogeneous and uniform domain 

 Radially symetric flow geometry into an Infinite Acting Radial Flow (IARF) 

domain

GW resources management : common practices



GW resources management : common practices

Unable to render any heterogeneity of flow occurring into real aquifers
Produce gross assessments of the hydraulic properties
Overestimation and underestimation the hydraulic properties of specific 
hydraulic objects into the aquifer

Theis-like aquifer (also refered to as IARF model) :
radially symetric flow geometry



Radially symetric flow geometry vs radial flow regime

Cylindrical shapes, radially symetric flow 
(homogeneous isotropic aquifer)

Elliptical
(homogeneous anisotropic aquifer) 

Any shape (heterogeneous aquifer)

Radially symetric flow geometry (Theis-like) is a specific type of radial flow regime
Radial flow regime is refers to the transient growth of the cross-flow area  A(r)

Theis = IARF Non-Theis

A(r) ~ r Radial

A(r) ~ r  Radial

A(r) ~ r  Radial

Radial flow strictly means A(r) ~ r

It does not refer to any specific
symmetry of flow lines, a priori

r(t) ~ t 0.5

r(t) ~ t 0.5
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The diagnostic response of a radial flow regime
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* for large t or small r  at the 
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test’s beginning

Theis

Data

Drawdown
log-derivative
ds/dlog(t)

The derivative signature of a 
radial flow regime is a 

horizontal plateau (slope = 0) 

tcritic

Plateau elevation = 2.3Q/4π T
Asymptotic part



Theis can be used only
into this time-window
The assumption of a radial 
flow regime is verified

Mis-use of the Theis
model
The assumption of a 
radial flow regime is not
valid

Mis-use of the Theis model
The multistage hydrodynamic
response is grossly
approximated

Verifying the validity of the Theis model with the log-derivative signal

Diagnostic non-radial flow 
regime (n = 1.5 ): the 
hydrodynamics of the 
aquifer is governed by a 
strongly inclined high-
conductivity fault



Mis-use of the Theis model
The assumption of a radial flow regime is not valid

Verifying the validity of the Theis model with the log-derivative signal

Impermeable boundary ?  No !

Noisy derivative time serie Bourdet differentiation

n = 1.25
n = 2

n = 2

Interpretation with fractional flow modelInterpretation withTheis-derived model



GW resources management : validity of the common practices

Prior validation of a radial flow regime should be done in routine applications 
before applying Theis or CJ methods

Poorly assessed by straight lines in CJ semi-log plots  derivative plots

1. How valid is the Theis model in nature? To which degrees does it diverge 
from reality ? 

2. How significant are the qualitative and quantitative errors induced on 
aquifers characterisation ? Practical implications ?

3. How to assess the validity of the Theis model in routine applications ?

4. If not in a radial flow regime… what are the alternative models ? 



Some consequences of applying overly idealized interpretation model

• Simplifying the behaviour of the system to an extreme degree and disregarding the
real geometry of flow;

• Ignoring the presence of several 1D, 2D or 3D hydraulic objects with non-equal
properties, which may actually be governing the aquifer’s global hydrodynamics at
various pumping times;

• In low-conductivity contexts, overestimating by several order of magnitude the
hydraulic properties of the pumped domain and missing the presence of distal
and/or discrete conductive domains which may be exerting a predominant role in
supplying water to the well over some pumping time-windows;

• Missing the presence of boundaries, or erroneously interpret non-existent ones;

• Globally, dismissing most of the diagnostic potential of the time-drawdown signal;

• Poorly assessing the impact of pumping an aquifer :
• Erroneous sustainable pumping rates
• Erroneous delineation of WHPA (wellhead protection areas)
• Misunderstanding of the risk from potential contaminant source inventory,
• Misunderstanding of the incidence on various objects into the environment, wet

zones, etc.



FLOW REGIMES ANALYSIS



Real-world pumping tests databases

Compilations from various geological contexts : hard-rock (magmatic, sandstones, 
limestones), granular (unconsolidated sediments, fluvial channels)

 Rafini (2008) : compilation of 41 constant-rate pumping tests

- 80% exhibited multi-stage responses

- Radial regime occurs in 17% of the 41 datasets

 Ferroud et al. (2018) : compilation of 69 constant-rate pumping tests

- 88% exhibited multi-stage responses

- Radial regime = 31% (of 121 interpreted flow regimes)



 Since the early 80’s, numerous authors* have reported 
1. that the flow regimes occurring in real media are actually 

much more complex and diversified than the unique radial 
flow regime

2. That Theis model is unable to accurately reproduce the 
obtained responses in many occurrences

* (Audouin et al., 2008; Ferroud et al., 2018; Kuusela-Lahtinen et al., 2003; Leveinen, 2000; Lods and Gouze, 
2004; Maréchal et al., 2004; Odling et al., 2013; Verbovšek, 2011, 2009 ; Bourdet et al, 1983) 

 70’s, 80’s, 90’s : Oil&Gas + GW researches produced 
numerous analytical models accounting for heterogeneous 
flow into various reservoir configurations

 Provides numerous diagnostic diagrams : diagnostic plots 
approach 



Verweij, 1995 ; Renard, 2009

Diagnostic plots approach 



1. The derivative analysis (Bourdet et al, 1983) 

Two fundamental historic breakthrough developments 

2.   The flow dimension theory (Barker, 1988)



Drawdown semi-log plot Log-derivative ds/dlogt bilog plots

The derivative signal provides a drastic gain in sensitivity

Constant slope of the derivative signal = hydrodynamic stable flow regime
(Barker, 1988)

1st historic breakthrough development :
the derivative analysis (eg. Bourdet et al, 1983) 

Makes it possible to distinguish between changes in flow regime caused by subtle 
variations in aquifer conditions 
 identification of several successive flow regimes



2rd historic breakthrough development : 
the flow dimension theory (Barker, 1988)

The basics of a new formalism :
1. The flow regime is defined by a new parameter : the flow dimension n
2. Radial flow regime : A(r) ~ r ; Generalized Radial Flow (GRF) regimes : A(r) ~ r n-1

3. n reflects the transient evolution of the frontal cross-flow area A(r) at distance r
4. n is obtained by a direct reading* of the log-derivative slope p : n = 2 - 2(p)
5. Stable n = hydrodynamically settled flow regime

n = 2, radial flow regime = 
drawdown log-rate is constant

* for large u, i.e., large t or small r  at the source, practically from pumping test’s beginning

Derivative data

n = 2

u large 
enough

Rafini and Larocque 2009

n < 2 flow regimes
= drawdown log-rate is increasing
Aquifers with a limited potential

n > 2 flow regimes
= drawdown log-rate is decreasing
High potential aquifers



Barker’s GRF model and flow dimension theory provide with a universal relationship
between :

1. The drawdown rate, which is given by the log-derivative signal : n = 2 - 2 p 

2. The expansion rate of the frontal cross-flow area A(r) (depressurization front pulse), 
which is unknown and relates to conceptual models : A(r) ~ r (n-1)

2rd historic breakthrough development : 
the flow dimension theory (Barker, 1988)

Ideal geometrical shapes

n = 1 ; A = constant

Linear regime: corridor
n = 2 ; A ~ 2πr 

Radial regime: cylinders
n = 3 ; A ~ 4πr2

Spherical regime: spheres



Evolution of n during the 
pumping test : scan of 
hydraulic conditions in the 
aquifer

Numerical simulation of a 
point source into an 

elongated aquifer
(homogeneous isotropic

medium)

n sequence : 3 – 2 – 1 – inf
(sperical – radial – linear – inf)

A(r) ~ r2

A(r) ~ r A(r) ~ r 0 = const.

Illustration of the relationships between the propagation of the cross flow frontal 
area A and the flow dimension n (and the drawdown rate)

A(r) ~ r (n-1)



Known flow regimes

The interpretable elementary flow regimes

 Several types of flow regimes are recognized, in theory and in nature

 n = 0 and 4 : positive or negative unit slopes 

Positive unit slope
Negative unit slope

 Other values of n remain non-interpretable since no consensual conceptual flow model 
is available

 n = 1, 1.5, 2, 3 : reflects specific hydrodynamic conditions  conceptual models



Ferroud ea (2017) database of 69 pumping datasets (121 distinct flow regimes)

The elementary flow regimes reported in nature

Interpretable values of n

Reminder : n ≠ 2  Non-Theis aquifer
Theis is valid only to 30% of occurrences, and essentially in carbonate aquifers

Linear – Sublinear Radial – Subradial
Spherical –

subspherical n > 3



Catalog of interpretable flow dimension sequences and 
associated conceptual models

• Comprehensive review of published conceptual flow models from petroleum and 
hydrogeology literature

• Mostly analytical models = various mathematical resolutions of the diffusivity problem 
with specific assumptions on the flow conditions (hydraulical and geometrical postulates)

• Also numerical models = empirical models obtained from experimental simulations, less 
idealized but criticized for its discutable generalization

Catalog of the interpretable
flow dimension sequences, 
i.e. associated to a 
conceptual flow model



(1)Tiab, 2005; 
(2) Linear no-flow frontier;
(3) Theis (1935), Cooper et 
Jacob (1949);
(4) Beauheim and Walker 
(1998); 
(5) Cinco-Ley et al (1978)
(6) Gringarten et Ramey (1974, 
1975); 
(7) Massonat et al 1993; 
(8) Miller (1962; Nutakki and 
Mattar 1982 ; Escobar et al, 
2012; Escobar et al, 2007; 
(9) Escobar et al (2004), 
Escobar and Montealegre
(2007) ; 
(10) Cinco-Ley et Samaniego
(1981); 
(11) Rafini et Larocque (2009); 
(13) Rafini and Larocque
(2012); 
(14) Abbazsadeh et Cinco-Ley 
(1995); 
(15) Rafini et al (accepted); 
(16) Neuman et Witherspoon 
(1969); 
(17) Ferroud et al (2016); 
(18) Hantush (1956), Hanush
(1960); 
(19) Barker (1988).

2. Linear, dual linear

1. Radial, dual radial

3. Bilinear combinations

4. Spherical combinations



Radial and dual radial combinations

n = 2
n = 2 – 2 

n = 2 – 4 – 2 



Radial flow regime

• The most frequently observed regime in natural media (ca. 20 to 30%)

• Occurs as often in fractured as in granular aquifers

• 3D hydraulic continuum (e.g., sandstone, dense and conductive fracture 
network) or…

• Weakly inclined conductive structure

• In fractured aquifers, occurs most frequently in carbonateous formations 
due to the presence of conductive subhorizontal stratification planes

• Frequently the last flow regime (very late pumping time) regardless the 
aquifer conditions, due to heterogeneities being « diluted » or « averaged » 
into the high volume of depressurized aquifer bulk, or large-scale,
hydraulic properties



Radial flow regime : real examples

n = 2

n = 2

Carbonateous rocks aquifers



Radial flow regime : subhorizontal flow structures

e.g., stratification in carbonateous rocks

• In stratified carbonateous rocks 

• Hard rocks with weakly inclined conductive faults



Radial flow regime : dense fractured network (continuum-like)

e.g., fractured hard rock aquifer when the fractures 
network is dense and connected

The cross-flow area is large compared to the size of 
the individual fractures
The fractures network behaves like a continuum



Dual radial sequences: overview

• Indicates the coexistence of several domains, either juxtaposed
(frontier, contiguous aquifer) or superposed (multiple porosity)

• Critical features for interpreting the proper conceptual flow model are :

1) whether the offset is null, negative or positive, 

2) the magnitude of the offset (whether it is greater or lower than 2)

3) the shape of the transitional regime



n = 2

n = 2

n = 2

n = 2

Dual radial sequences: real examples

Negative offset

Negative offset

Postitive offset ; D ≈ 2

Postitive offset ; D > 2

D = 2.1

D = 4.3



Dual radial sequences: impermeable frontiers

The slope (inversely proportional to transmissivity) is doubled after the no-flow boundary is reached
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CONCEPTUAL MODEL: single impermeable frontier Log-derivative response
Sequence of n : 2 – 2 with D = 2

Plateau a1
Plateau a2

n = 2
n = 2



Dual radial sequences: multiple impermeable frontiers

A2

A1

CONCEPTUAL MODEL: generalized multiple impermeable
frontiers model

r < d1 : A1(r) = 2πrb

d1
d2

α r > d2 : A2(r) = (α/360) A1(r)

The transmissive 
surface A2 is decreased
by a factor α/360
 Drawdown rate 
increases by an equal
inverse factor

Log-derivative response
Sequence of n : 2 – 2 with D > 2

D = 360/αz
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Dual radial sequences: multiple impermeable frontiers

A3

d1

A1

d1 < r < d2 : A2(r) = ½ A1(r)

d2

r < d1 : A1(r) = 2πrb

A2

α
r > d2 : A3(r) = (α/360) A1(r)

The transmissive 
surface A3 is decreased
by a factor 360/α
 Drawdown rate 
increases by an equal
factor
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CONCEPTUAL MODEL: generalized multiple impermeable
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Dual radial sequences: contiguous aquifers

Aquifer A
pumped
KmA

Aquifer B 
cryptic
KmB

Non-pumped domain is more transmissive: 
cryptic aquifer model  Kapp = KmB / 2



Dual radial sequences: contiguous aquifers

 The 2nd plateau is lower than the 1st one because the 
cryptic aquifer is more transmissive (a = 2.3Q/4πT)

 2nd plateau: Tapp = TmB / 2 ; offset is proportional to TmB / 
TmA

 Transitional stage is a negative unit slope : n = 4
 Sequence n : 2 – 4 – 2 

2nd drawdown rate 
stabilization (2nd

plateau): all supplied
water comes from the 
cryptic aquifer

Aquifer A
pumped
KmA

Aquifer B 
cryptic
KmB



Dual radial sequences: real examples

n = 2
n = 2

n = 2

n = 2

Positive offset 

D ≈ 2 : Impermeable linear noundary

Negative offset :
Cryptic (non-pumped) highly conductive aquifer

D > 2 : Multiple linear boundaries or a 
horizontal conductive fault



Linear, dual linear combinations

n = 2 – 1 

n = 1 – 1



Linear combinations: overview

 Linear response = laterally restricted flow
 Lateral restriction may be caused by

• Impermeable boundaries: fluvial channel, elongated aquifer models
• Hardrocks aquifers : 

- High diffusivity ratios between a conductive fracture or fault and the 
surrounding aquifer or aquitard

- Delayed pressure transfers to the matrix due to either skin effects 
on the fractures walls or impermeable material in a layered fault’s 
core zone

 Features allowing to decipher between these various models are: the time of 
occurrence (early, medium or late time pumping time) and the associations 
to prior or late radial stage



Deltaic deposits aquifer

Faulted hardrock aquifer

Fluvio-glacial deposits aquifer

Linear combinations: real examples

• Occurs in short or long time ?

• Infinite-acting ?

• Association to other regimes

(n = 2, n = 1.5) ?



Lateral flow restriction due to two impermeable opposite boundaries

media-cdn.tripadvisor.com
Esker = glacio fluvial channel

Sorted homogeneous material
(sand), excellent aquifers

Constant cross flow surface 
A ~ r n-1 = Const.
 n = 1

Linear regime: elongated (channel) aquifer



Linear regime: faulted/fractured aquifers

Lateral flow restriction due to high fracture/matrix diffusivity constrast or delayed pressure 
transfers (skin) (or confinement into a fault’s internal impermeable core zone)

Fault-related linear flow regime
Introduced in Cinco-Ley and Samaniego (1981) 
finite conductivity fracture model

The highest diffusivity contrasts, the 
longest the linear regime

 In hard rocks aquifers, the linear regime
is typically a short-duration, early
stage regime

 After A2 > A1 : radial flow regime ; 
sequence 1 – 2 for densely fractured
bedrock aquifers

The constant cross flow surface = the fracture’s section A1
 Linear stage remains as long as A1 > A2

A1
A2



Linear regime: faulted/fractured aquifers

Sequence 1 – 2 with increasing observation scale (front pulse diffusion)

n = 1

n = 2



Two successive linear regimes

T shaped channel model:
channel enlargment or junction of two
channels

Channel network in deltaic fans

Dual linear regime: fluvial channel



n = 1.5 « bilinear » combinations

n = 1 – 1.5 – 2  

n = 2 – 1.5

n = 2 – 4 – 1.5 – 2 



• The n = 1.5 flow regime, early referred to as bilinear flow regime, has 
been long recognized as produced by a vertical conductive fault 
embedded into a non-impermeable aquifer (Cinco-Ley and 
Samaniego, 1981; Rafini and Larocque, 2009, 2012)

• The associated flow regimes with n = 1, 2, or 4 indicate whether the 
fault is distal or directly connected to the pumping well and, in a lower 
extent, the attitude of the fault into the aquifer

n = 1.5 « bilinear » combinations: overview



n = 1.5 « bilinear » combinations: real examples

4
1.5

2
1.5

1.52 2

Hard rocks 
aquifers



n = 1.5 « bilinear » combinations: real examples

n = 1.5

Differenciation (Bourdet, 1983) of dataset measured with levelloger

Equivocal aquifer response
The hydrodynamics is governed
by a subvertical conductive 
tabular domain (fault)



• Contaminant transport 
controlled by bedding
planes and faults

• Matrix diffusion 
(porous-like) in 
embedding rocks –
dense and connective 
fractured network



Radial matrix-related regime
Late time

n = 2

Fractional 1.5 
fault-related regime

n = 1.5

n = 1.5 « bilinear » combinations

• Early stage n = 1 : matrix depressurization is negligible
• Mid-stage n = 1.5 : the response of the system is governed by fault properties, fault diffusion slow-down
• Late stage n = 2 : the fault does not extert any influence on the hydrodynamics, the response is governed by 

matrix properties

n = 1

Fault-related linear 
flow regime

Rafini and Larocque, 2009, 2012



n = 1.5 « bilinear » combinations

• Early stage n = 1 : matrix depressurization is negligible
• Mid-stage n = 1.5 : the response of the system is governed by fault properties, fault diffusion slow-down
• Late stage n = 2 : the fault does not extert any influence on the hydrodynamics, the response is governed by 

matrix properties

Large investigation scale: 
the fault is invisible



Pulido et al (2003)

Theoretical model of a not-
connected vertical finite-
conductivity fault: 
Abbaszadeh and Cinco-Ley 
(1995); Rafini and Larocque
(2009)

Early matrix-related
radial flow stage (before
the fault is reached)

Transitional
n = 4 stage

n = 1.5 « bilinear » combinations



Spherical combinations

n = 3 – 2 

n = 2 – 3 – 2 



Spherical combinations: overview and real examples



Spherical combinations: conceptual models

n : 2 – 3 – 2    n : 2 – 3 – 2    

n : 2 – (2) – 3    
n : 2 – 3    



Discussions

- Global methodology

- Limitations of the approach



Limitations of the submitted
methodology

• Non-unique interpretion of the conceptual flow model: different
conceptual models predict similar flow regime sequences

 Look for other data: geological environment, probes data

• Noisy derivative datasets lead to uncertained graphical interpretations

 Data preprocessing helps…

• Truncated sequences = partial diagnostic



Flow rate unstabilities



 Only qualitative diagnostic were presented in this talk

 Every conceptual model provides with sets of equations for the 

estimation of specific hydraulic parameters (oil & gas, 

hydrogeoloy)

 Integration of observation wells drawdowns series: higher

complexity, spatial interpertation of the hydraulic objects

 Ongoing PhD - Daouda Meite



Bourdet’s
correction for 
random noise

Flow regimes
description

Conceptual model 
interpretationSettings

Drawdown
semilog plot

Drawdown log-
derivative bilog plot

Adjust begining
and ending timeFlow 

dimension 
value

Adjust the slope

Segment #1

Segment #2

Segment #3

Segment #4

Adjust the vertical 
offsets on semilog plot

GRF 
normalization

SIREN: in progress interface 
dedicated to sequential analysis

n = 4 n = 1.5 n = 2 n = 0

Interpretation: this aquifer is governed by a transmissive steep fault Tf = 5.86x10-3 m2/s in the 
vicinity of the wellbore (not intercepted), embedded into a transmissive matrix Tm = 9.49x10-4m2/s

+
Late time: closed reservoir = impermeable barriers… (in all directions?)

Simultaneous manual
fit on bilog plot and 

semilog plot
Adjust the vertical 
offsets on bilog plot



Financial support partners 

Provide pump test dataset for our 
compilation

silvain.rafini@gmail.com

Thank you
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