HOW DO CONTINUOUS PERMAFROST LANDSCAPE PROCESSES INFLUENCE WHAT WE OBSERVE IN RIVERS AND STREAMS?

Bethany T. Neilson

Tyler V. King

Civil and Environmental Engineering Utah Water Research Laboratory

Utah State University

Mitchell Rasmussen Utah State University Douglas L. Kane, Levi Overbeck, University of Alaska Fairbanks Rose Cory, George Kling, Jason Dobkowski, University of Michigan M. Bayani Cardenas. Mike O'Connor. University of Texas Austin

PERMAFROST HYDROLOGY OVERVIEW

PERMAFROST HYDROLOGY OVERVIEW

Adapted from Wolvoord and Kurylk 2016, Vadose Zone Journal

SPECIFIC RESEARCH QUESTION

In continuous permafrost areas, what controls the temperature and dissolved organic carbon (DOC) responses we observe in rivers?

Connecting hillslope and riparian processes to river and stream temperature

AREAS OF CONTINUOUS PERMAFROST

Kuparuk River Aufeis Field

UPPER KUPARUK RIVER, ALASKA – DATA COLLECTION

University

UPPER KUPARUK RIVER, ALASKA - DISCHARGE

UPPER KUPARUK RIVER, ALASKA

King, T.V., B.T. Neilson, L. Overbeck, D.L. Kane (2016) WRR

UPPER KUPARUK RIVER, ALASKA – LATERAL INFLOWS

King, T.V., B.T. Neilson, L. Overbeck, D.L. Kane (2016) WRR

UPPER KUPARUK RIVER, ALASKA – LATERAL INFLOWS

King, T.V., B.T. Neilson, L. Overbeck, D.L. Kane (2016) WRR

UPPER KUPARUK RIVER, ALASKA – LATERAL INFLOWS

HOW DO LATERAL INFLOWS INFLUENCE TEMPERATURE?

TEMPERATURE MODEL

TEMPERATURE MODEL

TEMPERATURE MODEL

UtahState

UtahState

LOW FLOW PREDICTIONS

- Correct surface areas?
- Correct volumes (lateral inflows/losses)?
- Other processes?

King, T.V., B.T. Neilson, L. Overbeck, D.L. Kane (2016) WRR

SITE 5 - DISCHARGE COMPARISON

SITE 5 - DISCHARGE COMPARISON

SITE 5 - DISCHARGE COMPARISON

2015 PRELIMINARY LOW FLOW MODELING

King, T.V. and B.T. Neilson (2019) WRR

SURFACE AREA ESTIM

Range in Wetted Width [m]

2015 PRELIMINARY LOW FLOW MODELING

King, T.V. and B.T. Neilson (2019) WRR

REVISED TEMPERATURE MODEL: HYPORHEIC TRANSIENT STORAGE

2015 PRELIMINARY LOW FLOW MODELING

THE ROLE OF GROUNDWATER/SURFACE WATER EXCHANGES ON INSTREAM TEMPERATURES

Higher Order Rivers:

- Wet conditions Lateral inflows play an important role in understanding instream temperatures during higher flows.
- Dry conditions Hyporheic exchange becomes an important heat sink and buffers instream temperatures.

Do these trends hold for other lower order watersheds in this area?

IMNAVAIT CREEK, ALASKA

IMNAVAIT CREEK, ALASKA

Beaded, peat lined
Flowrate – ~0-1 m³/s

IMNAVAIT CREEK, AK – DRY CONDITIONS

IMNAVAIT CREEK, ALASKA – WET CONDITIONS

Merck, M. and B.T. Neilson (2012) Hydrological Processes Merck et al. (2012) Hydrological Processes

IMNAVAIT CREEK, ALASKA – WET AND DRY CONDITIONS

UtahState University

Merck, M. and B.T. Neilson (2012) Hydrological Processes Merck et al. (2012) Hydrological Processes

IMNAVAIT CREEK, ALASKA – WET AND DRY CONDITIONS

Merck, M. and B.T. Neilson (2012) Hydrological Processes Merck et al. (2012) Hydrological Processes

IMNAVAIT CREEK, ALASKA

IMNAVAIT CREEK, ALASKA

Groundwater inflows account for 85% of the cooling in the bottom layers

THE ROLE OF GROUNDWATER/SURFACE WATER EXCHANGES ON INSTREAM TEMPERATURES

Higher Order Rivers:

- Wet conditions Lateral inflows play an important role in upderstanding instream temperatures during higher flows.
- Lower Lower

pools, and result in colder instream temperatures on average.

 Dry conditions – Lateral inflows from "deeper" groundwater are cold and play a role in thermally stratifying water columns.

Connecting hillslope and riparian processes to river and stream DOC

IMNAVAIT CREEK, ALASKA

IMNAVAIT CREEK DISCHARGE

IMNAVAIT CREEK DISCHARGE AND DOC

IMNAVAIT CREEK DISCHARGE AND DOC

Imnavait Creek Discharge and DOC

IMNAVAIT CREEK DISCHARGE AND DOC 1993-2011

over a large range of Q?

Four Hydrologic State End-Members

VARIED HYDROLOGIC CONDITIONS

PARTIALLY DRAINED

SURVEY OF THE WATER AND ICE TABLES

Land Surface

Water Table

Ice Table

NUMERICAL FLOW AND TRANSPORT MODEL FORMULATION

PARTIALLY DRAINED

UtahState

MODELED GROUNDWATER FLOW PATHS

PARTIALLY DRAINED

Flow paths calculated using the surveyed water table

Flow paths calculated using the DEM to represent the water table

BASIN-WIDE MODELED GROUNDWATER FLOW PATHS

PARTIALLY DRAINED

VERTICALLY INTEGRATED MODELING

 Macro-topography controls groundwater flow under partially saturated conditions

VERTICALLY INTEGRATED MODELING

- Macro-topography controls groundwater flow under partially saturated conditions
- Groundwater modeling estimates are similar to:
 - baseflow measurements
 - groundwater inflow estimates based on measurements

VERTICALLY INTEGRATED MODELING

- Macro-topography controls groundwater flow under partially saturated conditions
- Groundwater modeling estimates match
 - baseflow measurements
 - groundwater inflow estimates based on measurements
- DOC requires groundwater contributions from entire riparian zone

INUNDATED

SATURATED

Neilson et al. (2018) GRL

PONDED

PARTIALLY DRAINED

NUMERICAL FLOW AND TRANSPORT MODEL FORMULATION

MODELED GROUNDWATER FLOW FIELDS

INUNDATED

MODELED GROUNDWATER FLOW FIELDS

PONDED

Neilson et al. (2018) GRL

MODELED GROUNDWATER FLOW FIELDS

SATURATED

Neilson et al. (2018) GRL

THE ROLE OF GROUNDWATER/SURFACE WATER EXCHANGES ON INSTREAM DOC CONCENTRATIONS

1. During dry times, pure groundwater discharge controls DOC concentrations.

- 4. Groundwater ages are relatively short (seconds to hours to days), but on average long enough to leach significant amounts of DOC.
- 5. Relatively constant DOC and is due to the constant supply of groundwater-borne DOC.

QUESTIONS?

Funding:

•NSF-ARC/PLR 1204220, 1204216, 1023270, 1022876, 1107707, 1504006, 1107593

•NSF Arctic LTER (NSF-DEB 1026843, 1147378, 1347042)

Utah Water Research Laboratory, Utah State University

Additional thanks to: Austin Jensen, Randy Fulweber, Jason Stuckey, Katie Harrold, Rob Gieck, Jorge Noguera, Shannon Syrstad, Chris Cook, Matt Kaufman, Kevin Befus, Peter Zamora, Gus Shaver, Anne Giblin, and the Arctic LTER and Toolik Lake Field Station

High Resolution Imagery

Discharge from Imagery - Topography

Discharge from Imagery - Modeling

Hydraulic/Hydrologic Features **Creating Thermal Anomalies**

Visual

TIR