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In continuous permafrost areas, what controls the 
temperature and dissolved organic carbon (DOC) 

responses we observe in rivers?

SPECIFIC RESEARCH QUESTION



Connecting hillslope and riparian 
processes to river and stream 

temperature
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Warmer

Colder

HOW DO LATERAL INFLOWS INFLUENCE 
TEMPERATURE?



TEMPERATURE MODEL
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• Correct surface areas?

• Correct volumes (lateral inflows/losses)?

• Other processes?

LOW FLOW PREDICTIONS

?
King, T.V., B.T. Neilson, L. Overbeck, D.L. Kane (2016) WRR
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SURFACE AREA ESTIMATION
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Higher Order Rivers:
– Wet conditions - Lateral inflows play an important role in 

understanding instream temperatures during higher flows.
– Dry conditions – Hyporheic exchange becomes an important heat sink 

and buffers instream temperatures.

Do these trends hold for other lower order 
watersheds in this area?

THE ROLE OF GROUNDWATER/SURFACE WATER EXCHANGES 
ON INSTREAM TEMPERATURES
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IMNAVAIT CREEK, ALASKA

• Beaded, peat lined

• Flowrate – ~0-1 m3/s
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IMNAVAIT CREEK, ALASKA

Vertical Pool Arrays
Groundwater Contributions

Bathymetry



TGW
QGW

Piezometer
Vertical Temperature Sensors

Thawed Sediments

IMNAVAIT CREEK, ALASKA

Permafrost



Groundwater inflows account for 85% of the cooling 
in the bottom layers



Higher Order Rivers:
– Wet conditions - Lateral inflows play an important role in 

understanding instream temperatures during higher flows.
– Dry conditions – Hyporheic exchange becomes an 

important heat sink and buffers instream temperatures.

Lower Order Beaded Streams:
– Wet conditions – Lateral inflows from very shallow, high 

hydraulic conductivity layers increase stream discharge, mix 
pools, and result in colder instream temperatures on average.

– Dry conditions – Lateral inflows from “deeper” groundwater 
are cold and play a role in thermally stratifying water columns.

THE ROLE OF GROUNDWATER/SURFACE WATER EXCHANGES 
ON INSTREAM TEMPERATURES

Future hydrologic responses and the associated 
groundwater/surface water interactions are key to 
understanding the potential influences of climate 

change on instream temperatures.



Connecting hillslope and riparian 
processes to river and stream DOC 



Site 1

IMNAVAIT CREEK, ALASKA

• Beaded, peat lined

• Flowrate – ~0-1 m3/s



IMNAVAIT CREEK DISCHARGE
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IMNAVAIT CREEK DISCHARGE AND DOC
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IMNAVAIT CREEK DISCHARGE AND DOC

Groundwater DOC 
Concentrations
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Imnavait Creek Discharge and DOC
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Groundwater Concentrations Surface Water Concentrations

Why are there relatively constant 
DOC concentrations over a large 

range of Q?

IMNAVAIT CREEK DISCHARGE AND DOC
1993-2011

Neilson et al. (2018) GRL

Why do surface water DOC values look 
so similar to groundwater DOC values 

over a large range of Q?
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PARTIALLY DRAINED

VARIED HYDROLOGIC CONDITIONS
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SURVEY OF THE WATER AND ICE TABLES
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NUMERICAL FLOW AND TRANSPORT MODEL FORMULATION

PARTIALLY DRAINED

Water table is either surveyed

or represented by a DEM

Flow is calculated with Darcy’s Law

Neilson et al. (2018) GRL



MODELED GROUNDWATER FLOW PATHS

PARTIALLY DRAINED

Flow paths calculated using 
the surveyed water table

Flow paths calculated using 
the DEM to represent the 

water table
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VERTICALLY INTEGRATED MODELING

• Macro-topography controls 
groundwater flow under 
partially saturated conditions
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VERTICALLY INTEGRATED MODELING

• Macro-topography controls 
groundwater flow under 
partially saturated conditions

• Groundwater modeling 
estimates are similar to:

• baseflow measurements 

• groundwater inflow estimates 
based on measurements

Land Surface

Groundwater

Frozen Soil
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VERTICALLY INTEGRATED MODELING

• Macro-topography controls 
groundwater flow under 
partially saturated conditions

• Groundwater modeling 
estimates match

• baseflow measurements 

• groundwater inflow estimates 
based on measurements

• DOC requires groundwater 
contributions from entire 
riparian zone

Neilson et al. (2018) GRL
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FINITE-ELEMENT
MODELING

Groundwater
1. Flow
2. Age

Overland water
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MODELED GROUNDWATER FLOW FIELDS
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MODELED GROUNDWATER FLOW FIELDS



SATURATED
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MODELED GROUNDWATER FLOW FIELDS



1. During dry times, pure groundwater discharge controls DOC 
concentrations.

2. During wet times, it is likely that all water moving down the hillslope 
exchanges with the subsurface at some point.

3. Even during conditions when water is flowing over the land surface, 
almost all water reaching the river will have entered the subsurface at 
some point in time.

4. Groundwater ages are relatively short (seconds to hours to days), but 
on average long enough to leach significant amounts of DOC.

5. Relatively constant DOC and is due to the constant supply of 
groundwater-borne DOC.

Future hydrologic responses and the associated 
groundwater/surface water interactions are key to 
understanding the potential influences of climate 

change on river chemistry.

THE ROLE OF GROUNDWATER/SURFACE WATER EXCHANGES 
ON INSTREAM DOC CONCENTRATIONS

Future hydrologic responses and the associated 
groundwater/surface water interactions are key to 
understanding the potential influences of climate 

change on surface water.
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Thermal Anomalies From Repeat Thermal Imagery
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