

Réseau québécois sur les eaux souterraines

Agricultural interactions with groundwater quality in southwestern Ontario

Jana Levison, Graeme MacDonald & David Browne

Water Resources Engineering G360 Institute for Groundwater Research University of Guelph

College of Engineering and Physical Sciences

SCHOOL OF ENGINEERING

Motivation

Distribution of MOECC water well records (Novakowski et al., 2006)

% using groundwater in municipalities (NRCan, 2011)

Motivation

Motivation

Why is groundwater vulnerable?

"There is widespread lack of understanding of groundwater linkages and dependencies (especially the vulnerability to land-use practices) and too many regard groundwater as an unlimited and uncoupled resource" (IAH, 2006)

IAH Netherlands (2011)

Two recent studies

Developing novel techniques for measuring in situ groundwater nitrate concentrations, vertical geochemical profiling, and real-time remote groundwater quality monitoring

MacDonald (2015)

Browne (2017)

Neonicotinoids in groundwater: presence and fate in two distinct hydrogeologic settings in Ontario, Canada

Two recent studies

Developing novel techniques for measuring in situ groundwater nitrate concentrations, vertical geochemical profiling, and real-time remote groundwater quality monitoring

MacDonald (2015)

Neonicotinoids in groundwater: presence and fate in two distinct hydrogeologic settings in Ontario, Canada

Browne (2017)

Problem statement

• Nitrate transport and fate is complex and obtaining accurate field measurements can be challenging

- Groundwater nitrate data is often captured at low temporal resolution and requires laboratory analyses
- Can we develop new sampling methods to obtain new insights?

Objectives

- Test and evaluate innovative sensor equipment in groundwater environments
- Develop novel monitoring methods that can be used to:
- 1. Obtain precise nitrate measurements in the field
- 2. Measure down-hole vertical profiles of groundwater chemistry
- 3. Monitor groundwater quality parameters at a high temporal resolution

MacDonald et al. (2017) Groundwater Monitoring & Remediation

(Ryan Osman, 2015)

Research locations

Sensor equipment

EXO[™] Water Quality Sonde – YSI Inc. (Yellow Springs, OH)

Submersible Ultraviolet Nitrate Analyzer (**SUNA™**) – Satlantic Inc. [Sea-Bird Scientific] (Halifax, NS)

Integrated Telemetry System – Hoskin Scientific Ltd. (Burlington, ON)

Flow Cell Testing

Vertical Profiling

Real-time Remote Monitoring (RTRM)

Flow Cell Testing

- Nine MWs in Norfolk County tested over four periods (Jul 2014 – Feb 2015)
- Purged water discharged through flow cell bucket containing SUNA
- SUNA obtained measurements of NO₃⁻ near continuously (i.e. every second)
- Compared SUNA readings to lab concentrations how precise are they relative to one another?

Vertical Profiling

- Eight PWs tested over two periods (Aug 2014 – Oct 2014)
- SUNA/EXO lowered down-hole and retrieved; measurements obtained at specified rates
- Can changes in geochemistry be observed at different hydrostratigraphic intervals?
- Are NO₃⁻ concentrations variable along OB well screen? In open bedrock boreholes?

Samples: NO₃⁻, temp., pH, EC, DO, turbidity, GW levels

Real-time Remote Monitoring (RTRM)

- Two PWs in Port Rowan tested (Nov 2014-Aug 2015)
- SUNA and EXO sensors suspended in screened interval
- Measurements obtained every 15
 minutes and then averaged hourly
- Climate data (precipitation, air temp.) collected hourly from UoG research station
- Can groundwater quality changes be correlated to recharge events (i.e. precipitation/GW levels)?

Results: flow cell testing

Error (mg/L): -0.25 | Error | (mg/L): 0.28

Results: flow cell testing

Results: vertical profiling

Results: vertical profiling

Results: vertical profiling

Results: real-time remote monitoring

- Noticeable increases in turbidity, EC, nitrate with spring recharge (Mar 9-)
- Increase in DO with spring recharge
- Magnitude of changes much larger for turbidity, EC compared to PR11
- Noticeable increase in pH preceding spring recharge

Conclusions

- Flow cell testing allows SUNA to measure NO₃⁻ concentrations in the field at high precision relative to purging techniques (R²=0.99, | Error | = 0.28 mg/L)
- 2. Vertical profiling provides a downhole method of measuring nitrate concentrations with depth in the water column
- 3. RTRM methods provide unique groundwater quality datasets at fine temporal resolution

Conclusions

- 4. Nitrate and DO have distinct changes in concentration with depth at the Stone Well (open bedrock borehole)
- Noticeable changes in turbidity, EC, nitrate were observed at two RTRM stations and appear to result from spring recharge
- Turbidity may serve as best indicator of recharge; aquifer response time on the order of 2 days in Port Rowan

Two recent studies

Developing novel techniques for measuring in situ groundwater nitrate concentrations, vertical geochemical profiling, and real-time remote groundwater quality monitoring

MacDonald (2015)

Neonicotinoids in groundwater: presence and fate in two distinct hydrogeologic settings in Ontario, Canada

Browne (2017)

Neonics

- Group of insecticides developed and introduced to commercial use in 1990s, early 2000s
- Rapidly widespread due to ease of use and perception that they are environmentally friendly

- Used as seed coatings for corn, soybeans

- Despite widespread application, knowledge surrounding environmental fate not comprehensive
 - Field studies largely focused on soil, soil dust and surface water bodies
 - Research about neonics in groundwater less robust

Objectives

- Investigate the presence and fate of neonicotinoids in Ontario groundwater
 - Compare results in distinct hydrogeologic settings (shallow, sandy aquifer versus a crystalline fractured bedrock aquifer)
 - Clothianidin and thiamethoxam are the most commonly used neonicotinoids at each research site

Browne et al. (2017) Submitted

Research sites

• Five seasonal sampling rounds conducted using 18 to 26 monitoring intervals at each research site

Norfolk County

- Unconfined quaternary aquifer
- Rich in groundwater that is characterized as highly vulnerable ¹
- Intensive agriculture
 - 78% of land is actively cultivated¹
 - Maize, soybeans, ginseng, tobacco, and wheat

- 26 multi-level wells (58 monitoring intervals) drilled for Tier 3 water budget study between 2010 and 2011
- Past studies at this site have examined groundwater contamination caused by nitrate^{2,3,4,5}

¹ LPRCA (2008) ² Gardner (2017) ³ Hollingham (2011) ⁴ Macdonald (2015) ⁵ Saleem et al. (2016)

Lanark County

- Thin, till overburden underlain by fractured, crystalline rock
- Predominantly forested
 - 29% of land is actively cultivated ¹
 - Small-scale maize and soybean farms (largest farm is 121 ha)

- 21 multilevel wells (52 monitoring intervals) progressively drilled between 2004 and 2008
- Past studies at this site have shown groundwater to be vulnerable to land-applied contaminants^{2,3,4,5}

Methods

Measuring Device	Parameter		
YSI 556 Handheld Device	Dissolved Oxygen Electrical Conductivity Oxidation-Reduction Potential pH Temperature		
Satlantic SUNA ¹	Nitrate-N		

Methods

Measuring Device	Parameter		
Pressure Transducers ¹	Groundwate	er elevations	
Rain Gauge ^{2,3}	Precip	itation	
LC-ESI(+)-MS/MS Analysis	Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam	Atrazine Azoxystrobin Cyantraniliprole Mefenoxam Metochlor	

Methods

- Crop survey
- Soil sampling
- River sampling
- Mathematical modelling

Results

- Clothianidin peak at several wells at both sites in August
- Low imidacloprid concentrations in the summer of 2016
- Thiamethoxam peak at one Lanark County well during April sampling rounds

Sampling Pound	Clothianidin Imidacloprid		Thiamethoxam	Number of	
Samping Round	(µg/L)	(µg/L)	(µg/L)	samples	
April 2016	TW17 (0.095)		TW17 (0.46)	50	
July 2016		LP-MW-08S (0.07)	TW17 (0.061)	44	
August 2016	LP-MW-02D (1.68) LP-MW-08D (2.09) LP-MW-11D (1.67) TW1D (1.16)	LP-MW-08S (0.03)		51	
November 2016				41	
April 2017			TW17 (0.42)	42	
Detection Frequency (%)*	2.2	0.9	1.3	228	

* Above level of quantitation

Norfolk County crop map

Location	Crop	Neonicotinoid	Treatment Rate (mg a.i./seed) ¹	Seeding Rate (seeds/ha)	Neonicotinoid Application Rate (g a.i./ha)
Norfolk	Corn	Clothianidin	0.25	74,000	18.5
County	Soybeans	Thiamethoxam	0.076	432,000	32.8
BA (2016)	0 1.75 3 3 0 1.75 3 0 1.75 10 10 10 10 10 10 10 10 10 10 10 10 10	234 5 km 5 km 6 LP10 6 LP10 6 LP12 6 LP14 6 LP17 6 LP17	1 2016 Crop Type Corn Soybeans Roads Waterbodies	Wells with Neonicotinoid Dete Wells without Neonicotinoid	etections Detections

¹ OMAFRA (2016) Crop map obtained from Agriculture and Agri-Food Canada (2017)

Clothianidin and nitrate in Norfolk County

Lanark County crop map

Location	Crop	Neonicotinoid	Treatment Rate (mg a.i./seed) ¹	Seeding Rate (seeds/ha)	Neonicotinoid Application Rate (g a.i./ha)
Lanark	Corn	Thiamethoxam	0.25	79,000	19.8
County	Soybeans	Thiamethoxam	0.076	402,000	30.6

¹ OMAFRA (2015)

Crop map obtained from Agriculture and Agri-Food Canada (2017)

Thiamethoxam and nitrate in Lanark County

Norfolk County (LP2) mathematical modelling

Lanark County (TW17) mathematical modelling

Transport through saturated subsurface in Norfolk County

Norfolk County (LP2) conceptual diagram

42

Lanark County (TW17) conceptual diagram

Recommendations

- Further research into how neonics move in groundwater within different climatic settings and hydrogeologic settings is recommended
 - Could also analyze effects of crop rotations on neonic movement
- Further research to analyze the movement of acetamiprid, dinotefuran, nitenpyram, and thiacloprid to groundwater
- Future focus on the presence and fate insecticides that will be used in lieu of neonics

Acknowledgements

Ontario Federation of Agriculture

Dr. Kent Novakowski, Queen's Dr. Victor Limay-Rios, UofG Dr. Art Schaafsma, UofG

Numerous graduate and summer students!

Merci!

jlevison@uoguelph.ca

www.uoguelph.ca/engineering/jlevison/home

Extra slides

How do our activities impact water quality & how can we mitigate them?

Long Point Tier 3

- Unconfined and confined overburden aquifers
- Well depths 10-40 m BGS
- Agricultural land use
- 9 monitoring wells

Port Rowan

- Unconfined overburden aquifer
- Well depths 10-15 m BGS
- Forested land use
- 4 production wells, 9
 monitoring wells

Guelph Area

- Shallow to deep confined bedrock aquifers
- Well depths 20-75m BGS
- Golf course/natural land use

Results: real-time remote monitoring

- Noticeable increases in turbidity, EC, nitrate with spring recharge (Mar 9-)
- Decrease in DO with spring recharge
- Turbidity pulses after fall and spring recharge events (Nov 24, Jan 3/4)
- No noticeable responses in pH or temperature

Results: real-time remote monitoring

- Similar responses in turbidity, nitrate between PR11 and PR8
- Groundwater levels appear to be strongly connected
- EC, DO, pH difficult to interpret because of scale
- How can we evaluate spatial/temporal relationships between variables?

Recommendations

- 1. Conduct flow cell testing at a municipal supply well
- 2. Monitor nitrate concentrations during a pumping test to evaluate effects of pumping on transport
- 3. Extend length of RTRM (i.e. multi-year) to evaluate seasonal behaviour
- 4. Expand profiling and RTRM testing to include more bedrock boreholes
- 5. Compare results from vertical profiling with multilevel sampling from same borehole
- 6. Isolate sensors for RTRM using packer equipment or FLUTe liners (if possible)

Past Studies

- Half-life in soil is sensitive to soil type, exposure to sunlight, moisture, temperature, pH, and cropping practice²
- Correlates positively with silty soil and negatively with sandy soil¹
- Frequently detected in runoff from agricultural fields¹
- Highly photodegradable in water^{3,4,5}

Neonicotinoid	Soil Degradation Half-Life (d) ^{3,4,5}	Log K _{OC} ^{3,4,5}	Solubility in Water at 20°C at pH 7 (mg/L) 3,4,5	Aqueous Photolysis Half-Life at pH 7 (d) 3,4,5	Aqueous Dissipation Half-Life (d) ^{3,4,5}
Clothianidin	545	2.1	340 (moderate)	0.1	40.3
Imidacloprid	191	2.1-2.5	610 (high)	0.2	30
Thiamethoxam	50	1.8	4100 (high)	2.7	30.6

Lanark County Deposit Permeability

Norfolk County crop map

	Soil	Solubility in	Aqueous
Neonicotinoid	Degradation	water at 20°C at	Dissipation
	Half-Life (d) ^{1,2,3}	pH 7 (mg/L) ^{1,2,,3}	Half-Life (d) ^{1,2,,3}
Clothianidin	545	340 (moderate)	40.3
Thiamethoxam	50	4100 (high)	30.6

¹ Bonmatin et al. (2015) ² Hladik et al. (2014) ³ Morrissey et al. (2015)

Crop map obtained from Agriculture and Agri-Food Canada (2017)

Clothianidin and nitrate in Norfolk County

Property	Clothianidin ^{1,2,3}	Nitrate ⁴	
Log K _{oc}	2.1	1.16	
Solubility in water at 20°C at pH 7 (mg/L)	340 (moderate)	90900 (high)	

¹ Bonmatin et al. (2015)
² Hladik et al. (2014)
³ Morrissey et al. (2015)
⁴ Royal Society of Chemistry (2015)

Thiamethoxam and nitrate in Lanark County

² Hladik et al. (2014)

³ Morrissey et al. (2015

⁴ Royal Society of Chemistry (2015)

Vadose Zone Numerical Modelling

• Hydrus 1D¹

$$\frac{\delta\theta}{\delta t} = \frac{\delta}{\delta z} \left(k \left(\frac{\delta h}{\delta z} - 1 \right) \right) - S$$

- Advection-dispersion equations for solute transport
- Uses:
 - 1D movement of water, heat, and solutes
 - Variably-saturated media

Saturated Zone Analytical Modelling

- Ogata-Banks Solution^{1,2} $C(x,t) = \frac{1}{2}C_o \left[erfc \left(\frac{x - \frac{v}{R}t}{\sqrt{4\frac{D}{R}t}} \right) + e^{v\frac{x}{D}} * erfc \left(\frac{x - \frac{v}{R}t}{\sqrt{4\frac{D}{R}t}} \right) \right]$
- Uses:
 - Water and solute movement in variably-saturated porous media

Fracture Transport Analytical Model

 Analytical Solution for One-Dimensional Advection with Matrix Diffusion¹

$$C(x,t) = \frac{1}{2}C_{o}\left[e^{-\frac{\lambda Rx}{v}}\right] \left[e^{\left(-\frac{\sqrt{\lambda}Rx}{vA}\right)} erfc\left(\frac{x}{2vAT'} - \sqrt{\lambda}T'\right) + e^{\left(-\frac{\sqrt{\lambda}Rx}{vA}\right)} erfc\left(\frac{x}{2vAT'} + \sqrt{\lambda}T'\right)\right]$$

- Uses:
 - Water and solute movement through a fracture network

Norfolk County (LP2) Mathematical Modelling

Lanark County (TW17) Mathematical Modelling

65

Mathematical Modelling

Mathematical Modelling

Transport through Fracture Network in Lanark County

Mathematical Modelling

LP-MW-02 (Norfolk County)

Clothianidin at groundwater level

Clothianidin at 2.5 m above groundwater level

Clothianidin at 5 m above groundwater table

LP-MW-02 (Norfolk County)

— Thiamethoxam at groundwater table

- —— Thiamethoxam at 2.5 m above groundwater level
- —— Thiamethoxam at 5 m above groundwater table

Mathematical Modelling

Effects on Vulnerable Species

Neonicotinoid	Toxicological Endpoint	Honeybees (µg a.i./bee)	Bumblebees (µg a.i./bee)	Solitary Bees (µg a.i./bee)	Aquatic Invertebrates (mg/L)
	Acute	3.79 x 10 ⁻³	1.91 x 10 ⁻³	3.79 x 10 ⁻⁴	> 40
Clothianidin	Chronic	1.38 x 10 ⁻³	1.38 x 10 ⁻⁴	1.38 x 10 ⁻⁴	0.12
	Maximum Exposure		2.30 x 10 ⁻⁵		2.09 x 10 ⁻³
Imidacloprid	Acute	3.79 x 10 ⁻³	3.8 x 10 ⁻²	3.7 x 10 ⁻⁴	85
	Chronic	> 2.82 x 10 ⁻³	> 2.82 x 10 ⁻⁴	> 2.82 x 10 ⁻⁴	1.8
	Maximum Exposure		7.70 x 10 ⁻⁷		0.07 x 10 ⁻³
Thiamethoxam	Acute	5.0 x 10 ⁻³	5.0 x 10 ⁻³	5.0 x 10 ⁻⁴	> 100
	Chronic	N/A	N/A	N/A	> 100
	Maximum Exposure		5.06 x 10 ⁻⁶		0.46 x 10 ⁻³