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This Talk Shows...

* An example of an intensive field study of
chlorinated solvent contamination in
fractured Cretaceous sandstone

« Strong plume retardation and attenuation
due to matrix diffusion



Bedrock Groundwater Research
Started in 1996
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Simi Valley

San Fernando Valley

SSFL Site
Boundary Los Angeles

Santa Susana Field Laboratory:
2800-acre industrial facility located
~50 km northwest of Los Angeles




Upland Site Between Communities

Chatsworth

Simi Valley Black Canyon

SSFL
Runkle Canyon

West Hills
Bell Canyon



Uplifted Late Cretaceous Turbidite Sandstone



Deep Marine Turbidite Deposit:
Interbedded Sandstone and Shale

Vertical Fractures (Joints

\



Nature of the Problem

At first glance the site is complex:
* Fractures
* Faults
* Dipping beds
 Numerous contaminant input areas
 DNAPL

Value of site conceptual model approach



High water table and groundwater
flow In fractures



Why does the SSFL groundwater
level stay high above the surrounding valleys?

The water table
stands ~1000 ft
above the valleys




Mountain Approximated
as a Ridge

K, =R L2/ h?

K, = bulk hydraulic conductivity
R R = recharge rate
L = width of mound
h = height of mound at center

v
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2L

Groundwater mound forms a long
ridge of constant cross section.

K ~10 ° cm/s



Dual Permeability System
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Fracture Porosity: 0.01 to 0.001%



Fast Average Linear Groundwater
Velocity in Fractured Rock
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Vs represents line path from A to B




Virtually all groundwater is present in
the low permeability matrix

Matrix porosity ~ 13 %

Matrix permeability ~ 10 - to 10 -1 cm/s




Approximately 50% of Recharge
Discharges at Seeps

S = Discharge to seeps
and phreatophytes

D = Deep flow
discharges beyond
mountain



Two Primary Functions at SSFL

Nuclear Research & Liquid

Metal Research for DOE

* Nuclear Power Research: 1956-1983
* Ten reactors

* Sodium component test facilities

* DOE Program ends 1988

Rocket Engine Testing for NASA

* 1949-2006

e Six Test Stands — 17,000 Rocket Engine
& Component Tests

e Last test March 3, 2006



How Did Contaminants
Get Into SSFL Groundwater?

DNAPL Infiltration Leaching of Solids Water Infiltration

Septic System
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ot SSFL in Public Eye
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Surficial Media Contaminated Areas

Areas recommended for corrective measures study based on suburban residential land use



Groundwater Monitoring Network

428 wells used to define extent of groundwater contamination



Much TCE DNAPL Went into the Ground

— What Happened to it?

CH2M Hill Estimate (1993) ~ 500,000
gallons

Number of Tests
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Nature of Contamination in Fractured
Sedimentary Rock

Source
Zone
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groundwater
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TCE is Most Mobile Contaminant
Due to DNAPL

. Dissolved ]
Water Tritium Perchlorate Dissolved TCE TCE DNAPL
DNAPL
Detection
Limits
(MCL)

Plug Flow Position



Rock Core Sampling to Find

Contaminants
ROCK CORE TCE mg/L

0 1 10 100

fractures core
<- nhon-detect

- samples
1 analyzed
2 > e —_—
3 > Fractures with
4 > Diffusion halos
5 >F———




Rock Core Drilling

at C-2, Canyon
Test Stand




Depth (m)
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Total of 20 Coreholes at 18 Locations



Depth in ft bgs

TCE Concentrations Decline with Depth

1200 1000 800 600 400 200

1400

> 7,000 Rock Core Samples in 20 Core Holes
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TCE Solubility
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Early
Time

Intermediate
Time

Late
Time

Source Zone / Plume Evolution
Conceptual Model

DNAPL reaches
stationary phase
in fractures

Much DNAPL
disappeared, diffusion
into matrix in source
and plume zones

No DNAPL remains and
most mass occurs in the
matrix, diffusion and
other processes cause
strong plume attenuation



Key Issues:
How many active fractures?

What is their Interconnectivitz?
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Z(m)

Interplay Between Matrix and Fractures
Controls Plume Behavior
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Focused Look at Northeast Plume




Source Zone Transect

Groundwater
Flow Direction



Elevation in ft AMSL

1200 1400 1600 1800 2000

1000

Total Equivalent Porewater Concentration along Source Zone Transect

Concentration averaged over 20 ft intervals {(ug/L Porewater)
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*Ordinary kriging with anisotrapy ratio = 5, anisotropy angle = 20 degrees



Northeast Plume Longsect

C P

Longsect

Groundwater
Flow Direction

Source .
Transect
Plume
\\ Transect




~ 300 m

TCE Distribution along NE Plume Longsect

(estimated porewater concentrations from rock core VOC
subsampling averaged over 6 m intervals)

TCE Migration @ 60 yr since initial releases

~ 1000 m
Groundwater Flow )



Concentrations Decline Rapidly with
Distance from Source

Maximum Equivalent TCE along Longsect

10q000 150000

50900

0

Maximum Equivalent TCE (ug/L Porewater)

Semi-Log Plot
RD-35B/C
el GO C-14 C-16/17
® - ®---———————- @--
500 1000 1500 2000 2500 3000

Distance along transect (ft)



Plume concentrations decline rapidly with
distance in the direction of groundwater flow



General Modeling Approaches
for Fractured Rock

Spatial Representation

Equivalent Porous
Media (EPM)

(averaged fracture and
matrix properties)

[ Dual Porosity (DP)
‘ . (coupled mobile and

immobile zones;

>

¥ —) exchange terms)
eI
W Discrete Fracture
Complex Rock Mass '
P — Network (DFN)
A1 ] (distinct fracture and matrix

% entities; rigorous simulation
/

of interactions)




Commercially Available DFN Models
FRACNAN

Waterloo
HydroGeoSphere
aroGeose



Si
mulate Plume Using DFN Numerical

Model
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Discrete Fracture Network (DFN) Approach
Characterization of Contaminated Bedrock

. Initial Site
Conceptual Model
Drill Corehole in and Near
I Contaminated Area 1

Prepared by
B.L. Parker




Discrete Fracture Network (DFN) Approach

Use of Rock Core Drill in or near Contaminated Areas Use of Drill Holes

Measurements during drilling

Measurements in completed hole

v v
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\ — Prepared by

B.L. Parker




Overview of DFN Methods

N

Rock Core Chemical Analyses
Improved Borehole Geophysics

Impermeable Flexible Liner
(FLUTe™)

High Resolution Temperature
Logging

Improved Hydraulic Tests Using
Straddle Packers

High Resolution Multilevel
Monitoring Systems




Site - Derived Parameters

Ioc Im




FRACTRAN Domain: Vertical Cross-Section
Tailored to Conditions along Plume Longsect

- |
300— X_SOO m Histogram: Fracture Apertures
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Length range (m) 20 - 100 5-20 Darcy Flux
: Constraint
Fracture density (fracs/m?) 0.007 0.010
Average fracture spacing (m) ~3 ~10



Simulated Hydraulic Head Distribution

Hypothetical Borehole
| X=500m

Head (m)

Average Hydraulic Gradients: Average GW Velocity in Fracture Network:

1% 1.5% — I
l ol o500 m/yr

— Vf:

f



FRACTRAN Contaminant Plume
Averaged over 5 m Intervals

Original (point data) — 60 years

TCE C/C,

Averaged over 5m intervals

300

Point concentrations extracted at 50 m 2so{ — T ——
intervals along flowpath, averaged . e = Log TCE
g p ’ J 2004 : o (nalL)

vertically over 5 m intervals and  _ e == e ;

resulting dataset kriged. N L = L = : 3

5 i = 5

100 £ 1

0
50

0 200 400 600 800 1000

X (m)



Comparison of FRACTRAN versus Field
Results along Plume Longsect

Field Plume
Longsect
(averaged)

300+ - —
FRACTRAN@60yr % = — (uglL)
E150 L : 2 : & - 2 = 4
d : : g g —= 5 E : 8 . £ 2
(averaged) N BOF === E :
100 T S e 1
= O
50
0
200 400 X(m) 600 800 1000

Field and model show similar bulk plume style and extent



Simulated Northeast Plume
No degradation included

PO = e=R Ottt O

after 50 years



FRACTRAN results suggest plume front nearly
stationary (physical processes only)

Nearly stable plume
(without degradation)

\



TCE
Degradation

Well-Interconnected
Fractures

20 year DNAPL Source
No Degradation
50 years

20 year DNAPL Source
Degradation (5 yr half life)
50 years



Mountain Scale 3-D FEFLOW EPM Model

* 8 km x 8 km domain

« 250,000 elements per layer

* 46 layers

* 11.5M elements total

 average element area ~ 256 m?
 average layer thickness ~10 m

Site Macro-Complexity

* major hydrogeologic units
« faults, dipping beds

* hydraulic head

« water balance



Forward Particle Tracks in Bedrock
FEFLOW 3D Groundwater Flow Model

1000 m particle tracks
under non-pumping
conditions



Have plumes migrated to off-site
receptors?



Study of Groundwater Discharging at
Seeps along Mountain Bedrock

Slopes: Searching for Contaminant
Plumes

Beth Parker, Amanda Pierce, John Cherry,
and Robert Ingleton



Water Tab e

Transpiration

Evaporation

<— Phreatophytes

Seep




Most seeps are located in ephemeral hill streams
and/or drainages






154 seeps identified by ground reconnaissance on
mountain slopes surrounding site



Purpose of Seeps Investigation

» Search for contaminants discharging
along mountain slopes

* Understand groundwater flow system



Seeps are Potential
Receptors for Contaminants




Seeps water can be a mixture from different

groundwater travel paths
Shallow |

S

Intermediate




Approach: Use Portable Drills to Instrument
Seeps With Monitoring Wells

Shallow

S

Intermediate




Approach

» Advance coreholes to depths ranging from
5 to 60 ft using portable drilling equipment.

— Shaw Portable Core Dirill
— Winkie Drill

e |nstallation of small diameter wells for:
— water level measurements
— sampling



Terrain Enroute to Seeps



Shaw Portable Core Drill

Shallowest www.backpackdrill.com

Drilling

Depths: 20 to 40 ft
Corehole Diameters:
1.65 or 2.00-inches
Run Length: 1.5 to 2 ft



http://www.backpackdrill.com/

Winkie Drill

Deeper www.minex-intl.com (sole manufacturer)

Depths: 50 to 75 ft
Corehole Diameter: 1.87”
Run Length: 5 ft



http://www.minex-intl.com/
http://www.minex-intl.com/
http://www.minex-intl.com/

Tripod used to remove rods

Pump supplies water to drill

Contained Fu

Battery-powered winch

Winkie Drill
Field Set-up

12 V Battery

Winkie Drill

Waste water containers  Pond Liner used to
catch all drilling fluids




Maximum Depths Drilled at SSFL

 Shaw Core Drill
— Maximum depth drilled: 37 ft

* Winkie Drill
— Maximum depth drilled: 54 ft
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Monitoring Well Design

* One well screen at the bottom

of each corehole

* Hole fully sealed above well

Intake

* No grout escapes into fractures

 No sand pack around well

“screen”
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Need for the ‘Grout Liner’

No Liner

Injected grout
pushes outward
into formation
along fractures
potentially
disrupting local
flow system

| |

With Liner

Grout is contained
and more natural

flow conditions
maintained

80
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Grout liner is custom constructed using
nylon material
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SP-25A
Depth: 13 ft

SP-25B
Depth: 18 ft

SP-25C
Depth: 28 ft

SP-25D
Depth: 37 ft
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3 Seep Clusters Installed in 2011 at
Contaminated Seeps



Seep Well Cluster: SP-890




Results of Groundwater Sampling
SP-890 Cluster

Groundwater Sampling Dates

SP-890C -> July 5, 2011
SP-890D -> July 5, 2011
SP-890G - September 12, 2011

FDP-890
TCE: 200 ug/L
cDCE: 440 pg/L

VC: 1.0 ug/L






Santa Susana Field Laboratory
Located on top of a sandstone
mountain (2850 acres)

\ NN VN \ AN

V" Aonual rainfall 18.6 inches
(N \ N N Perched groundwater

Water table i

near mountain top

\ N - Va n N
Annual Recharge ~ 60 to 200 gpm =~

B {4 VNGNS

Shallowenperchlorate
me Shale zones generally

lower bulk K

deeper groundwater

About half of the groundwater
originating on the SSFL _
discharges along slopes at k=,
seeps and <

phreatophytes, and
no contaminants

found offsite. /-
:7&

.
- contaminant cted

mass ig in rock ic
fractur\
small hydraulic

”
—

Schematic cross section with vertical exaggeration
(Not-To-Scale)
Prepared by SSFL Groundwater Panel December 2009



Summary of Key Findings

Diffusion of contaminants readily occurs in sandstone and
shale and is a very important process at SSFL.

Nearly all the contaminant mass is in the low permeability
rock matrix.

Most of the contamination is found close to where it went
into the ground.

Groundwater plumes are now stable and plume fronts are
nearly stationary.

Contamination has not been found at offsite seeps
consistent with lack of atmospheric tritium.
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