Canada

Linkages between agricultural practices and the quality of groundwater

- Serban Danielescu -

Environment and Climate Change Canada

Watershed Hydrology and Ecology Research Division Water Science & Technology Directorate Science and Technology Branch

Agriculture and Agri-Food Canada

Environmental Health

Research and Development (Coastal Region) Fredericton Research and Development Centre Science and Technology Branch

Geotop Seminar - February 23rd, 2017

Research program

Focus

 Assessment of the impacts of agricultural practices on groundwater quantity and quality

Research areas

- Nutrients in groundwater
- Coupling soil/ unsaturated saturated zone processes
- Groundwater surface water interactions

Highlights

- Numerical modelling of water and nutrient (nitrogen) transport
- Potato production systems
- Fractured bedrock (and till)
 Page 2 February-23-17

Environment and Climate Change Canada

Environnement et a Changement climatique Canada

Departmental mandate

- AAFC (APH Strategy 2015 2018 Draft Action Plan)
 - Understanding chemical, physical and biological processes that lead to N and P losses from agricultural lands (into surface, groundwater and atmosphere) (Priority 1)

ECCC (ECCC Science Strategy 2014 – 2019)

 Understand and track the origin, fate and impact of critical contaminants in the environment (air, water, wildlife) (...) (Science Goal)

Page 3 – February-23-17 Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

EC-AAFC joint research

ECCC: Canadian Centre for Inland Waters (CCIW) *Burlington, Ontario*

AAFC: Fredericton Research and Development Centre (FRDC) *Fredericton, New Brunswick*

- Supports the "Principle of Linkages" (EC SP) and the "Partnering for Impact" strategic goal (AAFC S&I Strategy)
- Reduces the cost/effort of implementing departmental mandates
- Allows direct access to resources (e.g. funding, technical support, scientific expertise) of both departments

Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

CCIW, Burlington, ON (ECCC)

- 600 staff (ECCC, DFO, CCG, RCMP)
 - 3 groundwater scientists
- Main areas of research:
 - Sources, fate and impacts of nutrient and other contaminant loading on aquatic ecosystems (sediment, groundwater, surface water)
 - Algal blooms & biota
 - Emerging contaminants

Page 5 – February-23-17

FRDC, Fredericton, NB (AAFC)

- 12 scientists
- Main areas of research:
 - Potato germplasm enhancement
 - e.g. develop new varieties, gene mapping
 - Crop protection

- e.g. early detection of viruses and pests, pest control
- Enhancing the environmental performance of potato production systems
 - e.g. soil science, erosion, surface and groundwater research

Research Projects

Environment and Climate Change Canada Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

PEI Context

- Potatoes are the most important agricultural commodity and have been linked to increasing groundwater contamination
- Quality of groundwater is critical for PEI since groundwater
 - is the sole source for drinking water
 - has significant contributions to surface water

Fish kills and anoxic events have been reported in the recent past

Environment and Climate Change Canada Page 8 – February-23-17 Environnement et

Changement climatique Canada

Agriculture and Agri-Food Canada

Study site – HEF, Field 355, PEI

- 2.4 ha, AAFC experimental farm (Charlottetown)
- Gentle slope
- Topographic high and forested area up-gradient
- Field under a 3-year potato rotation
- Fractured sandstone bedrock

Deurock

Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

Project-based research components

N leaching from the root zone

RZWQM - Root Zone Water Quality Model (USDA-ARS)

- 1D, Flow, N cycling, plant growth in soil
- 2011-2014 daily

Calibration (biomass)

Calibration (soil moisture)

Environment and Climate Change Canada Page 11 – February-23-17 Environnement et

Changement climatique Canada

Agriculture and Agri-Food Canada

RZWQM: N gains and losses

Period	Crop	Pl. upt.	Leach.	Nitrif.	Miner.	Volat.		
2011/12	potato	125.7	63.5	152.6	49.5	8.7		
2012/13	barley	83.4	50.1	113.4	42.7	4.5		
2013/14	clover	22.9	29.5	45.0	52.6	0.0		
Environment and Climate Change	d Enviro Canada Chang	nnement et ement climatique (Canada	Agr Agr	Agriculture and Agri-Food Canada		Agriculture et Agroalimentaire Canada	

Seasonal drainage and loading

Drainage / Recharge

Shallow vadose zone - setup

Simulated Concentration Vs. Resistivity

Environment and Climate Change Canada Page 15 – February-23-17 Environnement et

Changement climatique Canada

Agriculture and Agri-Food Canada

Deep vadose zone – setup (ERI)

Environment and Climate Change Canada Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

Electrical Resistivity Imaging (ERI)

- Sub-horizontal layers of alternating resistivity (till)
- Tracer percolated to 3.5 m in 46 days
- Little evidence of bulk matrix flow below 3.5 m
- Preferential percolation paths (i.e. fractures)

Environnement et Changement climatique Canada

Particle tracking (FEFLOW)

Environment Environnement Canada Canada Page 18 – February-23-17

Saturated zone - FEFLOW

- Finite Element subsurface
 FLOW system
 - 3D, Flow, N transport/fate
 - Unsaturated saturated flow modelling
 - 2001-2014 daily

Environment and Climate Change Canada Page 19 – February-23-17 Environnement et

Changement climatique Canada

Agriculture and Agri-Food Canada

Groundwater-surface water interface

- HEF Field 355
- GWSWI biogeochemically active
- Denitrification at the streamgroundwater interface
- Push-pull tests of (isotopically enriched N)

Environnement et

Changement climatique Canada

Page 20 – February-23-17

Evapotranspiration (ET)

Environment and Climate Change Canada Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

Seepage, Percolation, Recharge

Environment and Climate Change Canada

Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

Hydrograph separation: digital filters

Baseflow separation tool: 10 algorithms

Environnement et

Changement climatique Canada

Environment and Climate Change Canada Page 23 – February-23-17

Agriculture and Agri-Food Canada

Hydrograph separation: geochemical tracers

	%gw	%gw	%gw	%gw	%gw	%gw	%gw	%gw	%gw	%gw
Date	hyd sep	2H	180	cond	Cl	NO3-N	Са	Mg	SO4	PO4
25-Jun-08	81.4	105.0	105.1	n.a.	72.1	72.9	80.9	62.8	78.8	n.a.
28-Oct-08	52.4	49.4	31.3	n.a.	43.4	29.7	57.5	47.4	35.3	n.a.
17-Sep-09	81.7	95.9	95.5	58.4	91.9	75.3	92.0	60.5	74.9	n.a.
20-Oct-09	71.8	86.9	84.4	65.8	92.5	79.0	82.6	61.0	86.9	n.a.
04-Aug-10	83.9	101.4	98.0	74.0	97.3	80.9	98.6	74.9	104.3	n.a.
08-Nov-10	69.7	77.2	73.0	72.9	67.4	58.5	89.8	70.8	47.0	n.a.
Average	73.5	86.0	81.2	67.8	77.4	66.1	83.6	62.9	71.2	n.a.
NRMSE		0.270	0.219		0.225	0.228	0.293	0.475	0.230	n.a.
Correl		0.966	0.958	0.035	0.693	0.842	0.746	0.509	0.686	n.a.
Stdev	12.0	18.1	26.7	9.4	19.8	20.8	20.4	10.0	22.9	

Environment Environnement Canada Canada Page 24 – February-23-17 Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Canada

Black Brook Watershed (BBW)

- 14.5 km²
- Hilly landscape
- 65% agricultural land
- Climate
 - 1100 mm yr⁻¹ precipitation
 (30% snow)
 - 3.5 °C average air temperatur

Fractured shale bedrock; insignificant matrix porosity

Page 25 – February-23-17 Environnement et

Changement climatique Canada

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Google earth

Nitrate concentrations

- 82% of the samples above the guideline for protection of aquatic life (2.5 mg NO3-N l⁻¹)
- 19% of the samples above the MAC for nitrate in drinking water (10 mg NO3-N l⁻¹)

	mg NO3-N I ⁻¹
Average	5.8
Maximum	20.6

Environment and Climate Change Canada Page 26 – February-23-17 Environnement et

Changement climatique Canada

*

Monitoring and sampling

- Ground water monitoring wells
 - 35 wells
 - 11 piezometers
 - 5 municipal wells
 - 19 domestic wells
 - Monitoring
 - Continuously for water level
 - Monthly for nitrate
 - Seasonal basis for major ions, water and nitrate isotopes

Environment and Climate Change Canada Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

Numerical modelling

Use findings for refinement of existing models

High resolution, reduced scale

Environment and Climate Change Canada Page 28 – February-23-17 Environnement et Changement climatique Canada

*

Agriculture and Agri-Food Canada

Particle tracking (MODFLOW)

Page 29 - February-23-17

Environment and Climate Change Canada Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

Tracers:¹⁵N & ¹⁸O in Nitrate

Page 30 – February-23-17

*

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Environment and Climate Change Canada

Environnement et Changement climatique Canada

Tracers: water isotopes

Precipitation

- No spatial variation at watershed scale
- Significant seasonal and short-term (i.e. event) variation
- Groundwater
 - Derived from local modern precipitation; muted seasonal variations
 - Aquifer waters are well mixed
 - Rapid infiltration/ percolation (no evaporative losses)
 - Main source for streamflow on both annual (~80%) and event (min. ~50%) basis
 - Spring snowmelt is the most significant contributor to recharge
 - Slightly depleted water in the deepest wells

Environnement et Changement climatique Canada

Page 31 - February-23-17

Agriculture and Agri-Food Canada

Groundwater remediation - phreatophytes

3.7 m³/d validated groundwater extraction / pumping rate

Environment and Climate Change Canada Page 32 – February-23-17 Environnement et Changement climatique Canada

Agriculture and Agri-Food Canada

Acknowledgements

- Research funded through
 - AAFC (SAGES, GF & GF2)
 - Environment Canada (A-base)
- Collaborators:
 - Bernie Zebarth, Mark Grimmett, Li Sheng, Judith Nyiraneza, Yefang Jiang, Vernon Rodd, John Spoelstra, Dale van Stempvoort and others
- Technical support:
 - Mona Levesque, Rick Allaby, Sylvie Lavoie, Sandy Jenkins, Lionel Stevens, Zisheng Xing, Irene Power, Ambrose Malone, John Voralek, Greg Bickerton and others Page 33 - February-23-17

Environment and Climate Change Canada

Environnement et Changement climatique Canada Agroalimentaire Canada