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Context

Proper understanding and representation of
hydrosphere interactions (between the
atmosphere, land surface, soil zone, aquifers,
rivers/lakes, and vegetation) is increasingly
relevant to climate prediction, environmental
protection, and water management

We are at a crossroads in hydrological modeling:

- models (of all flavors) are being integrated across many disciplines and over
multiple scales, and they are being intercompared

- better datasets are increasingly being made available (for hypothesis testing and
model validation) that provide observations (on the ground, airborne, and from
space) of more processes, in more detail, and at higher accuracy

- computational boundaries are continually being pushed (cost and capabilities of
systems, efficiency and robustness of algorithms), for easier and more effective
data analysis and process simulation
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CATHY (CATchment HYdrology) model description

(1)

0(5.) L V[ K SV 7))+ 6, (0)

general storage term [1/L]: z vertical coordinate +ve upward [L]
o=3S,Ss+ ¢dS,/dy) q, subsurface equation coupling term

water saturation = 46, [/] (more generally, source/sink

volumetric moisture content [L3/L3] term) [L3/L3T]

saturated moisture content [L3/L3] h ponding head (depth of water on

specific storage [1/L] surface of each cell) [L]

porosity (= &, if no swelling/shrinking) S hillslope/channel link coordinate [L]

pressure head [L] @) discharge along s [L3/T]

time [T] Cy kinematic wave celerity [L/T]

saturated conductivity tensor [L/T] D, hydraulic diffusivity [L?/T]

relative hydraulic conductivity [/] q, surface equation coupling term

zeroin x and y and 1 in z direction (overland flow rate) [L3/LT]

Paniconi & Wood, Water Resour. Res., 29(6), 1993 ; Paniconi & Putti, Water Resour. Res., 30(12), 1994
Orlandini & Rosso, J. Hydrologic Engrg., ASCE, 1(3), 1996 ; Orlandini & Rosso, Water Resour. Res., 34(8), 1998
Putti & Paniconi, CMWR Proceedings, 2004; Camporese, Paniconi, Putti, & Orlandini, Water Resour. Res., 46(W02512 ), 2010



Main features of the model
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The coupling term for the model is
computed as the balance between
atmospheric forcing (rainfall and
potential evaporation) and the
amount of water that can actually
infiltrate or exfiltrate the soil. This
threshold-based boundary condition
switching partitions potential fluxes
into actual fluxes and changes in
surface storage.
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Subsurface flow module

Various functional forms for S, (y) and K,,,(y)

Heterogeneities (K, K
by layer

sy Ksz» Ss, @) by "zone" and

DEM-based (uniform) grid or user-defined
(nonuniform) surface grid input

(a) Uniform sand; (b) silty sand; (c) silty clay.

3D grid automatically generated with variable layer
thicknesses and different base ("bedrock") shapes

Finite element spatial integrator (Galerkin scheme,
tetrahedral elements, linear basis functions)

Weighted finite difference discretization in time

gulation

Time-varying boundary conditions: Neumann,
Dirichlet, source/sink terms, seepage faces, and
atmospheric fluxes

Adaptive time stepping; Newton and Picard § \erical projected
linearization; selection of CG-type linear solvers; etc layers




Surface flow module (cell differentiation, lake handling, other features)

Overland (hillslope rills) and channel flow along s

DEM pre-analysis for definition of cell drainage
directions, catchment drainage network and outlet, etc

"Constant critical support area": overland flow V cells
with upstream drainage area A < A*; else channel flow
(2 other threshold-based options also implemented)

Leopold & Maddock scaling relationships; Muskingum-
Cunge solution scheme (explicit and sequential); etc

"Lake boundary-following" procedure to pre-treat lakes

Storage and attenuation effects of lakes and other
topographic depressions are accounted for by transferring
with infinite celerity all the water drained by the "buffer"
cells to the "reservoir" cell; level pool routing calculates
the outflow from this cell: EY,

~=1®-0()




Surface flow module (drainage network flow characteristics)

Surface runoff propagated through a network of rivulets
and channels automatically extracted from the DEM.

Spatial (term I) and temporal (term Il) variations of flow
characteristics of the drainage network (stream channel
geometry W and conductance coefficient k) derived
from application of downstream (according to upstream
drainage area) and at-a-station (according to flow
discharge) fluvial relationships:
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* From L. B. Leopold and T. Maddock Jr. (1953), “The hydraulic geometry of stream channels
and some physiographic implications”, U. S. Geological Survey, Professional Paper no. 252



Coupling, time stepping, and iteration

"Pond_head_min" threshold parameter accounts for
microtopography

des ’Anglais
Allen

Coupled system solved sequentially*; surface first, for Qk+1 — Havelock
and h**1; then subsurface, for y**1; finally overland flow
rates g **! are back-calculated from subsurface solution
[*sequential solution procedure but with iterative BC
switching during subsurface resolution to resolve the
coupling]

Nested time stepping: one or more surface solver time
steps for each subsurface time step (based on Courant
and Peclet criteria for the explicit surface routing scheme;
also reflects typically faster surface dynamics compared to
subsurface)

Interaction between cell-based surface grid and node-
based subsurface grid includes input option for coarsening
of latter grid. Allows us to exploit slower subsurface
dynamics and looser grid constraints (implicit scheme),
and can lower CPU and storage costs of 3D module




Boundary condition-based coupling (surface BC switching procedure)

Case |I: Ponded surface
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Case ll: Saturated but not ponded
Case Ill: Unsaturated
Case IV: Dry (stage-two drying)

Analogous, but more straightforward
(as treated In subsurface-only mode)




Some recent studies (successes and challenges)
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Hydrograph separation (Havelock hillslope, southwestern Quebec)
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Guay, Nastey, Paniconi, Sulis: Hydrol. Process., 2012




Bedrock leakage (idealized hillslopes / sloping unconfined aquifers)

Water table profiles calculated by hsB at t = 50 days as
function of constant leakage rates

—no leakage

— leakage = 1x10° ms™

— leakage = 1x10% ms™

— leakage =55x10°ms™
leakage = 1107 ms”

Spatially distributed leakage rates calculated after Darcy's
law - 5 % inclination, Keey = 16°° m/s, Kagutara = 1€”° M/s
3,E-08 ~

60 80
distance along hillslope [m]

2,E-08 ~

convergent hillslope

1,E-08 -
Questioning a fundamental paradigm

0,E+Q0 | in hillslope hydrology.
(/ %0
-1,E-08 1 - Highly dependent on downslope BC
) o8 = dvergenthilsiope treatment — not just a numerical issue.

-3,E-08 - distance along hillslope [m]

leakage [m/s]

Broda, Paniconi, Larocque: J. Hydrol., 2011




Predicting near-surface soil moisture state (des Anglais river basin, southwestern Quebec)

CLASS (red) and CATHY (black) results for
monthly soil water content at different depths
(shallow to deep from top to bottom) and for
past (left) and future (right) climate projections.
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Sulis, Paniconi, Rivard, Harvey, Chaumont: Water Resour. Res., 2011



Hysteresis in storage—discharge dynamics (Larch Creek catchment, northern Italy)
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CATHY can reproduce
hysteresis and thresholding
behavior observed in the
relationship between the
subsurface storage and
discharge responses of a
small catchment. No ad hoc
parameterization is needed.

Is there any link to or
contribution from unsaturated
zone hysteresis?

Nature and role of nonlinear
phenomena in atmosphere—
land surface—soil-aquifer
interactions and feedbacks
are poorly understood.

Simulated (top) and observed (bottom) responses in shallow, deep, and intermediate
observation wells for 7-8 August 2009 (left) and 16-18 August 2009 (right) rainfall events.

Camporese, Penna, Borga, Paniconi: Water Resour. Res., 2014




Rill flow vs sheet flow (benchmark tests for model intercomparison)
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Benchmarking is a complicated business even for synthetic test
cases ... Why and how do different models (even based on the
same equations) perform differently? And what to do about it??

Evolution of the point of intersection between the water
table and the land surface for the sloping plane test case.
The outlet face is at x = 400 m. ParFlow: solid line; CATHY:
dashed-dotted (sheet flow) and dashed (rill flow).

Sulis, Meyerhoff, Paniconi, Maxwell, Putti, Kollet: Adv. Water Resour., 2010
Maxwell, Putti, Meyerhoff, et al.: Water Resour. Res., 2014




Simulation of multiple response variables (Biosphere 2 Landscape Evolution Observatory)
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How does the model perform when we examine distributed
responses? And what happens when we include solute transport?
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Niu, Pasetto, Scudeler, Paniconi, Putti, Troch: Hydrol. Earth Syst. Sci., 2014



Problem of grid scale invariance (des Anglais river basin, southwestern Quebec)
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There are many reasons (causes) for grid scale
invariance (and not limited to just the CATHY model).
One of the most serious challenges in catchment-based
hydrological / ecological modeling ...
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Sulis, Paniconi, Camporese: Hydrol. Process., 2011



Extensions and evolution of the model (flow and transport; other processes)

Flow (water quantity and distribution)

Surface

Subsurface O'(S”)al// V- [K K (S”)(V W+ 7]2)] +q.

Transport (water quality and interactions with other substances)

0Q, . 0Q, Q,

Surface —-I-

ot ' 9s _° o

odc
ot

Subsurface

=V-[-qc+DVc]+q

Weill, Mazzia, Putti, Paniconi: Adv. Water Resour., 2011
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