Alpine Hydrogeology: Linking Field Observations to Basin-Scale Hydrology

Masaki Hayashi Dept. of Geoscience, Univ. of Calgary, Canada

Acknowledgements

Students, Technicians, Post-docs, Colleagues Jaime Hood, Greg Langston, Danika Muir, Andrius Paznekas, James Roy, Alastair McClymont, Larry Bentley, Nathan Green, Kate Forbes,

Funding Support

Biogeoscience Institute (Univ. of Calgary) Alberta Ingenuity Centre for Water Research Canadian Foundation for Climate and Atmospheric Science (IP3 Network) Environment Canada

Logistical Support Lake O'Hara Lodge Parks Canada

Mountain Groundwater

Himalayan River Basins

Mountain block recharge

Andermann et al. (2013, Nature GS)

- Manning and Solomon (2005, Water Resour. Res.)
- Ajami et al. (2011, WRR)
- Welch and Allen (2012, WRR)

Mountain Groundwater

Alpine groundwater sustains critical habitats.

- Lowry et al. (2011, WRR)
- Brown et al. (2009, Freshwater Biol)

Mountains as 'Water Tower'

Christopherson (2000)

Mountain Rivers Provide Water Supply

Annual Average Runoff

0 25 100 200 500 1000 2000 mm/yr

Hydrological Atlas of Canada (1978)

Bow River in the Canadian Rockies Discharge at Banff (2200 km² unregulated)

Data: Water Survey of Canada

Lake O'Hara Hydrological Observatory (14 km²) Elevation: 2000-3500 m

Image from Google Earth

- Weather stations
- Water level gauges
- Stream flow gauges
- Other instruments

Lake Water Balance

If there is no groundwater flowing in or out, streams in + rain = stream out + evaporation

The lake has more outflow than inflow.

Opabin Creek Sub-Watershed (5 km²)

Opabin Creek entering Lake O'Hara

Opabin Creek source: Groundwater spring

Opabin Plateau

Lake O'Hara

> Opabin Creek

> > enistom

Source spring

Opabin Glacier

Water Input and Output in the Opabin Watershed

Groundwater provides temporary storage.

Opabin Basin Water Balance (2008)

Hydrogeological Response Units • Bedrock (hard quartzite) • Proglacial moraine

seismic refraction

electrical resistivity

Opabin Glacier

Langston et al. (2011, Hydrol. Process. 25: 2967)

Nuclear Magnetic Resonance Imaging Blue colour indicates water molecules

Lehmann et al. (2012. Geophysics, 76: B165)

Opabin Glacier_,

Opabin Lake

Bedrock Surface Map from Radar Data

Emerging Conceptual Model

B Dry Moraine Material

Massive Ice

Permafrost

Saturated Moraine Material

Tarn or Lake

Langston et al. (2011, Hydrol. Process. 25: 2967)

Estimating Hydraulic Conductivity of the Moraine

- Water balance equation
- Energy balance equation
- Tracer mass balance equation

Chloride in the Tarn

Langston et al. (2013, Water Resour. Res. 49: 5411)

Groundwater outflow from the tarn

Langston et al. (2013, Water Resour. Res. 49: 5411)

Groundwater outflow from the tarn

Langston et al. (2013, Water Resour. Res. 49: 5411)

Hydrogeological Response Unit: Talus

Geophysical Survey of Talus Resistivity Imaging and Ground Penetrating Radar (GPR)

Line 3: Ground Penetrating Radar

Line 3: Electrical Resistivity

Thickness of low resistivity zone below high resistivity cannot be determined (Hilbich et al., 2009).

Measurement of Talus Discharge

Gauging Station

Babylon Creek

Babylon Creek Discharge, 2008 Diurnal fluctuations, peaking in early evening. Half life ($\lambda_{1/2}$) of exponential decay < 1 day.

Sequential Photographs, 2008

uly 8, 2008

August 6, 2008

6

Aug.

Hillslope Flow in Unconfined Aquifers Brutsaert (2005) Approximation: Kinematic Wave

$$Q = Ky \left(-\frac{dy}{dx} + \sin \alpha \right) \cong Ky \sin \alpha$$

Q: flow per unit width (m²/s)
K: hydraulic conductivity (m/s)

The pulse of water table travels like a wave.

- $c = K \sin \alpha / n_e$
- c: velocity of wave propagation (m/s)
- *n*_e: drainable porosity

Muir et al. (2011, Hydrol. Process., 25: 2954)

Analysis of Babylon Hydrograph Peak discharge – peak snowmelt = 3 to 7 hrs Flow rate ranged between 0.01 and 0.03 m³/s

Conceptual Model of Talus Groundwater Fast hydraulic response time (< 2-3 days). Flow through a thin (< 0.1 m) saturated layer.

Muir et al. (2011, Hydrol. Process., 25: 2954)

Hydrogeological Response Unit: Alpine Meadow

Water table is controlled by fill-spill of bedrock basin.

McClymont et al. (2010, Hydrol. Earth System Sci., 14: 849)

From Process Observation to Hydrograph

field observation

physically-based model

river-basin model

grid-scale function

Storage

Bow River in the Canadian Rockies Discharge at Banff (2200 km² unregulated)

Data: Water Survey of Canada

Average Winter Baseflow discharge / drainage area

Average Winter Baseflow Runoff discharge / drainage area

Groundwater-Dependent Ecosystems

Key Points

- 1. Groundwater stores snowmelt, glacier-melt, and rain water; and releases them slowly.
- 2. Storage capacity is smaller than snowmelt volume, but significant for baseflow provision.
- 3. Bedrock topography controls groundwater flow in alpine hydrogeological response units.
- 4. Challenge remains in scaling up the field-based understanding to river basin models.

Acknowledgements

Students, Technicians, Post-docs, Colleagues Greg Langston, Danika Muir, James Roy, Alastair McClymont, Larry Bentley,

Funding Support

Biogeoscience Institute (Univ. of Calgary) Alberta Ingenuity Centre for Water Research Canadian Foundation for Climate and Atmospheric Science (IP3 Network) Environment Canada

Logistical Support Lake O'Hara Lodge Parks Canada